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A boundary integral method is used to model the flow of capsules into pores. An
axisymmetric configuration is considered where the capsule and the pore axis coincide.
The channel is a cylinder with hyperbolic entrance and exit regions. The capsule has a
discoidal unstressed shape, is filled with a Newtonian liquid and is enclosed by a very
thin membrane with various elastic properties (neo-Hookean or area-incompressible).
The motion of the internal capsule liquid and of the suspending fluid is governed by
the Stokes equations whose solution is expressed as boundary integrals. Those are
computed by a collocation technique, where points are distributed on the capsule
interface, on the channel walls and on the entrance and exit sections of the flow
domain. The capsule interface mechanics follow the theory of large deformations of
elastic membranes. The numerical model uses a forward time-stepping method, where
the position and the deformation of the capsule are computed at each time step.

The model allows the study of the effect of a number of parameters (capsule size
and geometry, membrane elastic properties) on the flow. The entrance length in the
pore, the steady additional pressure drop at equilibrium and the capsule deformed
profiles are determined. It is found that the entrance of a capsule into a pore is not
sensitive to downstream conditions; but the length of tube necessary to reach steady
conditions depends strongly on capsule size and membrane behaviour. Bursting of
capsules with a neo-Hookean membrane is predicted to occur through a phenomenon
of continuous elongation. The flow of a capsule with a membrane that resists area
dilatation depends strongly on particle size and shape.

1. Introduction
Capsules are composite particles consisting of a liquid internal medium, enclosed by

a very thin deformable membrane. This definition covers a large number of particles
ranging from liquid droplets, to biological cells (red blood cells for example), and to
artificial capsules. Blood cells have been extensively studied, both experimentally and
theoretically for obvious physiological reasons. The interest in artificial capsules is
more recent. Indeed, artificial capsules occur in many practical applications in cos-
metic, pharmaceutical or agricultural industries. They are presently being considered
in medical applications, for the encapsulation of organ cells before implantation.

When suspended in another liquid subjected to flow, a capsule deforms. However,
the prediction of the corresponding motion is a difficult problem of continuum
mechanics, because fluid mechanics (internal and external liquid motion) and solid
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mechanics (deformation of the membrane) are strongly coupled. The case of capsules
(or cells) suspended in unbounded shear flows is well documented both on the
experimental and theoretical side. Experimental studies of red blood cells in simple
shear flow have shown that the cells deform and orient with respect to streamlines,
while the membrane rotates around the steady deformed shape (Fischer, Stohr &
Schmid-Schönbein 1978, Sutera, Pierre & Zahalak 1989). Recent experimental results
on artificial capsules in shear flows confirm this behaviour (Chang & Olbricht 1993a, b;
Burger & Rehage 1992). On the theoretical side, models of the motion of initially
spherical cells in shear flow have been proposed for the case where the cell deformation
is small (Barthès-Biesel 1991). The case of cells deformed into an assumed ellipsoidal
shape has also been solved (Keller & Skalak 1982; Sutera et al. 1989) and used
to interpret experimental observations of red blood cells in shear flows. Numerical
studies of the large deformations of capsules are now available, in pure straining flow
(Li, Barthès-Biesel & Helmy 1988, Pozrikidis; 1990) or in simple shear flow (Pozrikidis
1995; Zhou & Pozrikidis 1995).

A case of interest that has been only scantily addressed pertains to the flow of
capsules in cylindrical tubes. This situation is encountered during filtration processes
where a capsule suspension is forced through a filter with small pores. On the
physiological side, this flow occurs in the microcirculation, where 8 µm discoidal
red blood cells squeeze into capillary vessels with a diameter as small as 4 µm.
Owing to the complexity of the mechanical processes that occur during filtration
or microcirculation, it is difficult to distinguish among the roles of the various
physical parameters: flow strength, size ratio between the tube and the cell, initial cell
geometry, membrane mechanical properties, internal viscosity. Consequently, filtration
experiments are difficult to interpret other than in a qualitative sense. Similarly, from
the physiological point of view, it is difficult to determine which of those parameters
affect the flow in the microcirculation most.

Some theoretical models of the motion of red blood cells in capillary tubes have
been proposed over the years. The cell is then represented as a capsule with an
area-incompressible membrane. This limits strongly the possible deformations of
the interface. When the liquid film between the cell and the wall is small enough,
it is possible to use the lubrication approximation. This approach was taken by
Secomb et al. (1986) for steady axisymmetric situations where the cell and the tube
are coaxial. The solution of the lubrication problem is obtained in the case of
an area incompressible membrane, with negligible shear resistance. The problem is
then amenable to a composite analytical/numerical solution. When shear elasticity
and bending resistance are included, a numerical model must be developed. In this
case, the stress-free reference state of the membrane is assumed to be spherical (this
obviously means that there is a volume difference between the reference and deformed
states). Flared cell shapes analogous to those observed in human microcirculation
are then predicted. The case of very narrow tubes (with a diameter slightly above
the minimal value necessary for a cell to flow while keeping its surface and volume
constant) has been studied by Halpern & Secomb (1989). They predict that the cell
takes on a slug shape with either convex or concave rear ends depending on the size
ratio between the cell and the tube. Hsu & Secomb (1989) have also considered three-
dimensional situations where the cell is off-centre, but find only a small additional
hydrodynamic perturbation due to non-axisymmetry. This result justifies the use of
axisymmetric models.

The objective of this paper is to investigate the hydrodynamics of a capsule in
tube flow. We first study spherical capsules with a neo-Hookean membrane. This
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corresponds to artificial capsules with a cross-linked polymer membrane (nylon,
polylysine, etc.), such as those commonly used in practical applications. Then dis-
coidal capsules are considered, with an elastic membrane that strongly opposes area
dilatation. This corresponds to cells surrounded by a bilayer type of membrane
(e.g. red blood cells). Rather than seeking only steady states, the full entrance pro-
cess into the tube is modelled and the motion of the particle inside the cylindrical
tube is followed until a steady state is reached. This procedure has two advantages.
First, monitoring the capsule motion into the tube yields the mapping between the
positions of the membrane material points in the reference and deformed states.
Secondly, it gives information regarding the transient phenomena during entrance
and thus helps understand some filtration experiments where such transients are
specifically recorded (Fisher, Wenby & Meiselman 1992). In particular, the length
of tube necessary to reach a steady state is at present unknown. A similar fully
unsteady situation was considered recently by Leyrat-Maurin & Barthès-Biesel (1994,
referred to as I in the following) who modelled the flow of initially spherical capsules
through hyperbolic pores. It will be of interest to compare the predictions of the
two models, particularly during the entrance process. As regards the steady-state
situation, the equilibrium shape of the capsule is also unknown. It will be seen that
this shape depends in a complex fashion on the capsule properties and on the flow
strength.

The model is based on the boundary integral formulation of the Stokes equations
(Ladyzhenskaya 1969). The numerical procedure follows that of Leyrat-Maurin &
Barthès-Biesel (1994) for the flow of a capsule in a hyperbolic constriction. The
problem statement is presented in §2 together with the governing equations. The
numerical method and the validation procedure are discussed in §3. Typical results
obtained for capsules with a neo-Hookean membrane, that are either smaller or larger
than the tube, are presented in detail in §§4 and 5. Capsules with a membrane that
opposes area dilatation are considered in §6, and the effect of particle size and shape
is discussed.

2. Problem statement
The pore is an axisymmetric channel consisting of a cylindrical tube of radius rt

and length Ltrt, with symmetrical coaxial hyperboloidal entrance and exit sections.
A set of cylindrical coordinates (x, r, φ) is used with origin O at the cylindrical tube
entrance (figure 1). The equation of the channel wall (xB, rB) is

r2
B − x2

B(1− ζ2
0 )/ζ2

0 = 1 for xB 6 0, (2.1a)

r2
B = 1 for 0 6 xB 6 Lt, (2.1b)

r2
B − (xB − Lt)2(1− ζ2

0 )/ζ2
0 = 1 for xB > Lt, (2.1c)

where lengths have been scaled by rt. The parameter ζ0 is the cosine of the angle of
the hyperbola asymptotes with the x-axis, and thus the smaller ζ0, the sharper the
entrance of the pore. The pore is filled with a Newtonian incompressible fluid with
viscosity µ, flowing with a constant flow rate Q. In the absence of any particle, the
velocity and pressure fields in the channel are denoted v∞ and P∞.

The capsule consists of a drop of a Newtonian incompressible fluid with viscosity
λµ surrounded by an infinitely thin membrane with negligible bending resistance
and with a surface elastic Young modulus Es. In its stress-free state, the capsule
has a discoidal shape with radius Rrt and thickness 2Drt. The revolution axis of
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Figure 1. Schematic of the problem.

the particle is aligned with the tube axis. The situation is thus fully axisymmetric.
Furthermore, the tube is sufficiently long for the capsule to reach a steady mo-
tion. Consequently, entrance and exit processes are decoupled and may be treated
independently.

Non-dimensional quantities are used throughout, based on the following scales:
rt for lengths, Es for elastic tensions, V0 (the mean tube velocity, V0 = Q/πr2

t ) for
velocities, µV0/rt for viscous stresses and pressures.

2.1. Equations of motion for the fluids

The domains occupied by the internal and external liquids are denoted as Ωint and
Ωext. For the entrance process, the suspending fluid domain Ωext is bounded by the
capsule membrane (M), the channel walls (B) and by two sections Si and St located
respectively in the entrance funnel and in the cylindrical part of the pore. For the
exit process, Ωext is bounded by M, B, St and a section So located in the exit funnel.
Normal unit vectors n are pointing into Ωext. Under the assumption that the particle
Reynolds number is very small, the velocity and pressure in the internal and external
fluids satisfy the Stokes equations:

∇ · σint = 0, ∇ · vint = 0 in Ωint, (2.2a)

∇ · σext = 0, ∇ · vext = 0 in Ωext, (2.2b)

with

σint = −P intI + λ(∇vint +T ∇vint) in Ωint,

σext = −P extI + (∇vext +T ∇vext) in Ωext,

where σext and σint are the stress tensors, vext and vint the velocity fields and P int and
P ext the pressure in the external and internal domains, respectively. The section Si
(resp. So) is located at a distance L from the cylindrical tube entrance (resp. exit). As
shown in I, for large L the undisturbed pressure is uniform to O(L−3), and the radial
and axial velocities are O(L−3) and O(L−2) respectively. The pressure in Si is kept
constant and is set to zero. The section St is far enough inside the tube for entrance
effects to be negligible and for Poiseuille flow to prevail. Furthermore, Si, So and St
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are also far enough from the capsule for the velocity perturbation to be negligible:

vext = v∞ ≈ 0 for x ∈ Si or So, (2.3)

vext(x) = v∞(x) = 2(1− r2)ex for x ∈ St, (2.4)

P ext = 0 for x ∈ Si, (2.5)

P ext = P∞ + ∆P+(t) for x ∈ So or St, (2.6)

where ex is the unit vector along the tube axis and ∆P+ is the additional pressure
drop due to the presence of the capsule. For Stokes flow, the entrance region in the
tube has been found numerically to be of order one tube radius.

The no-slip boundary condition is required on the constriction wall:

vext = 0, x ∈ B. (2.7)

No-slip and membrane impermeability lead to

vext = vint = ∂x/∂t for x ∈M. (2.8)

Finally, dynamic equilibrium of the membrane is expressed as

ε(σext − σint) · n+ p = 0 for x ∈M, (2.9)

where p is the force per unit area of deformed surface exerted by the membrane on
the surrounding liquids. The capillary number ε:

ε = µV0/Es,

is a measure of the deformability of the membrane in terms of the ratio between
viscous and elastic stresses. As ε decreases, the membrane becomes stiffer or the forces
exerted by the fluids on the capsule decrease.

2.2. Capsule membrane mechanics

The principal directions of strain and stress are along the meridian and azimuth
directions. Since the membrane is assumed to be infinitely thin, elastic stresses are
replaced by tensions, with principal components Ts and Tφ in the meridian and
azimuth directions. The shell equilibrium equations relate the elastic tensions to
the tangential and normal components of the force per unit area p exerted by the
membrane:

p · τ =

[
dTS
ds

+
1 dr

r ds
(TS − Tφ)

]
, (2.10a)

p · n = −(KSTS +KφTφ), (2.10b)

where τ is the unit tangent vector to the meridian, oriented in the direction of
increasing s and where Ks and Kφ are the principal curvatures of M:

KS = −
(

dτx
ds
nx +

dτr
ds
nr

)
, Kφ =

nr

r
. (2.11a,b)

The membrane deformation is described in Lagrangian variables by labelling
the membrane material points with their coordinates ξ, ρ, and arclength S before
deformation (S = 0 at the first upstream point of the membrane where ρ = 0). After
deformation, the points have coordinates x, r and arclength s (s = 0 where S = 0).
The principal extension ratios λs and λφ in the meridian and azimuth directions are
thus

λs = ds/dS; λφ = r/ρ. (2.12a,b)
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In order to close the problem, a constitutive law must be postulated for the mem-
brane. In the particular case of an infinitely thin neo-Hookean three-dimensional
incompressible material, the tensions are given by (Green & Adkins 1960, p. 153;
Barthès-Biesel & Rallison 1981)

TS =
1

3λs λφ

(
λ2
s −

1

λ2
s λ

2
φ

)
, Tφ =

1

3λs λφ

(
λ2
φ −

1

λ2
s λ

2
φ

)
. (2.13a,b)

Such a constitutive law allows for local surface area changes.
For a bilayer type of membrane, which strongly resists any change in the local

surface area, the constitutive law of Skalak et al. (1973) is appropriate:

Ts =
λs

4λφ
[λ2
s − 1 + Cλ2

φ(λ2
s λ

2
φ − 1)], Tφ =

λφ

4λs
[λ2
φ − 1 + Cλ2

s (λ
2
s λ

2
φ − 1)], (2.14a,b)

where the ratio C between the dilatation and the Young modulus, is very large
(C � 1). The relation between the surface Young modulus Es and the surface shear
modulus Gs depends on the constitutive law of the membrane. It is Gs = Es/3 in the
case (2.13) and Gs = Es/4 in the case (2.14).

The problem is thus reduced to solving equations (2.2) with boundary conditions
(2.3)–(2.9). The integration of the kinematic condition (2.8) gives the instantaneous
position of the membrane points, and the force p is obtained from (2.10)–(2.12),
subject to either (2.13) or (2.14).

3. Boundary integral formulation and numerical procedure
3.1. Boundary integral formulation

A convenient method for solving such creeping flow problems involving deformable
interfaces is provided by the boundary integral formulation of the Stokes equations.
This method was first proposed by Rallison & Acrivos (1978) for liquid drops in a
pure straining motion, and later adapted to capsules in the same flow (Li et al. 1988,
Pozrikidis 1990), to liquid drops in tubes (Martinez & Udell 1990) and to capsules
in pores (I). This procedure will be only briefly outlined here, but details may be
found in the book by Pozrikidis (1992) and in the related paper I. There are two main
differences between the case in I and the present situation. First, the undisturbed
velocity field is not known, and thus the use of disturbance fields is not beneficial.
Secondly, some double-layer integrals must be added to account for the velocity fields
at the entrance and exit fluid sections of the flow domain.

When the internal and external viscosities are equal, the integral equations greatly
simplify and the cost of the computation is significantly reduced. This is the case that
will be considered here, and from now on

λ = 1.

This assumption does not limit severely the conclusions of this study. Indeed it only
affects the transient phases of the capsule motion as it enters or exits the pore. It
does not influence the stationary results such as the steady capsule shape, velocity
and pressure drop since, at steady state, the internal motion has ceased. Similarly, it
would have also been possible to account for membrane viscoelasticity, by adding to
either (2.13) or (2.14) a term of the form η∂λα/∂t where α stands for s or φ, and where
η is the surface viscosity. For the same reason as above, the addition of this effect
would not change the steady solution that is finally obtained. Like internal viscosity,
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it would of course change the time (or equivalently the tube length) it takes to reach
this steady state. Indeed, this was shown recently by Secomb (1995) who has studied
the flow of tightly fitting capsules with a viscoelastic area-incompressible membrane
through capillaries with variable cross-section.

The integral equation relates the velocity of points at M, B, Sf (Sf stands for Si or
So) and St to the velocities and forces on these surfaces:

∀x ∈M ∪ ∂Ω,

1

α
v(x) = −

∫
∂Ω

K(x− y) · v(y) · n(y)dS(y) +
1

8πε

∫
M

J(x− y) · p(y)dS(y)

+
1

8π

∫
∂Ω

J(x− y) · F (y)dS(y), (3.1)

where ∂Ω = B ∪ Sf ∪ St. The parameter α is equal to 1 when x is on M or in Ωext and
to 2 when x is on ∂Ω. In the last integral, F (y) denotes the traction exerted by ∂Ω
on the suspending liquid. This is unknown on B and must be determined as part of
the solution. On Si, So and St, F (y) follows from (2.3)–(2.6):

F (y) = 0 for y ∈ Si,
F (y) = −(Pnp + ∆P+)ex for y ∈ So,
F (y) = −(Pnp + ∆P+)ex − 4rer, for y ∈ St,

where the additional pressure drop is unknown.
The kernels J and K correspond respectively to the single- and double-layer

potentials, and are known functions of position given in index notation by

Jij(x− y) =
δij

|x− y| +
(xi − yi)(xj − yj)
|x− y|3 , Kijk(x− y) =

−3

4π

(xi − yi)(xj − yj)(xk − yk)
|x− y|5

Correspondingly, the double layer integrals involving K , must be taken in the Principal
Value sense.

Since the flow is axisymmetric, the φ dependence can be eliminated by analytical
integration (Youngren & Acrivos 1975), reducing the dimension of the problem and
converting the surface integrals into line integrals along meridian curves. The expres-
sion for the integrated kernels J can be found in Li et al. (1988) or in Pozrikidis (1992).
Although the integrals in (3.1) are improper when y = x, due to the singular behaviour
of the kernels J , they may be shown to exist because of the logarithmic behaviour of
the singularity. The integrated kernels K are given by Youngren & Acrivos.

3.2. Numerical procedure

The numerical procedure for solving this problem follows closely that discussed in I,
and is only briefly outlined. The entrance process is modelled as follows. The position
of the capsule centre of mass at the channel axis is denoted xG(t). At time t = 0, the
undeformed capsule is placed at xG(0), and its motion is followed through the pore.
At any given time t, the position of the membrane material points is thus known,
and the force p is obtained from (2.10)–(2.13) or (2.14). The boundary integral (3.1) is
then written for points x on ∂Ω, and use is made of boundary conditions (2.3), (2.4)
and (2.7). The solution of the resulting Fredholm integral equation yields the force
distribution exerted by the solid wall and the additional pressure drop on the outlet
section St of the flow domain. Only the axial component of (3.1) is necessary to account
for boundary condition (2.4). It follows that, when x is on St, the K kernel is identically
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zero when y is also on St, and there is no singular contribution from the double-layer
integrals. Once the forces on the boundary are known, the integral equation (3.1) is
written for x on M, the velocity vm of the membrane is computed. Equation (2.8)
is integrated by means of the Euler method: the membrane points are moved by an
amount vm∆t and the process is repeated. The program stops when the capsule reaches
a steady state, i.e. when two values of the additional pressure drop corresponding to
two positions one pore radius apart differ by less than 1%. The program also stops
when the gap width between the capsule and pore wall becomes less than 0.01.

The exit process is modelled in essentially the same way. Starting with the steady
shape obtained at the end of the entrance process, the capsule is placed at a position
xG far enough from the exit section for the presence of the exit funnel to be negligible
and for Poiseuille flow to prevail in the pore downstream of the capsule. The solution
of the integral equation then follows the same steps. The program stops when the
additional pressure drop is reduced to less than 10% of its steady-state value.

A collocation technique is used, based on a partition of the boundaries and on the
determination of the unknown forces and velocities at these discrete locations. The
undeformed meridian curve of M is partitioned by nM points evenly spaced by ∆SM
along the arclength. The meridian curve of B is partitioned with nB points. These
are evenly spaced by ∆sB in the cylindrical part. In the funnel part, they are evenly
spaced along the parameter xB = arccosh(rB) so that the last interval at the apex
of the hyperbola is equal to ∆sB . During entrance, the flow pattern is essentially the
same as in the hyperbolic pore studied in I. Consequently, the capsule and entrance
section were positioned as in I, with typical values L = 30 and xG(0) = −6. Section St
is placed at a distance equal to at least 5 from the tip of the last steady capsule shape
(this obviously implies some trial and error process) and is uniformly partitioned
with a standard spacing ∆st = 0.03. The singularities of the kernels J are treated
as explained in I, by subtracting the asymptotic expression for J in the numerical
integration of the singular terms and then adding the analytically calculated sum. The
numerical integration is performed by means of Simpson’s rule adapted to unequal
intervals, which has an accuracy of order ∆s4, where ∆s represents the maximum
interval length. The corresponding weights depend only on the collocation point
spacing.

The smoothing method of Longuet-Higgins & Cokelet (1976) is used to remove
the oscillations in the capsule deformed profile. To ensure that the capsule volume
remains constant, the position of the capsule points with respect to the centre of
mass is rescaled by a factor equal to the cube root of the volume, at each time
step. The relative volume variation between two successive time steps was always
less than 10−6. The geometrical properties of the capsule surface that enter equations
(2.10)–(2.13) are evaluated by means of a five-point differentiation scheme with a
precision O(∆S2

M) for the meridian curvature. The explicit character of the method
(Euler time integration) makes it susceptible to numerical instabilities. Li et al. (1988)
have introduced the following stability criterion:

∆t < ε∆SM,

which leads to very small values for ∆t.

3.3. Numerical validation of the results

When the cylindrical pore is sufficiently long, the capsule is expected to converge
towards a steady shape with corresponding steady values of the additional pressure
drop ∆P+ss and of the centre-of-mass velocity vGss. The numerical solution is con-
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nM 85 101 147 171

∆SM 0.03 0.025 0.017 0.015
∆P+ss 7.49 7.12 6.95 6.89
(vx − vG)max 0.34 0.22 0.12 0.09
(vr)max 0.32 0.21 0.12 0.09

Table 1. Effect of membrane partition on the additional pressure drop,
relative axial and radial velocity. R = 0.8, ε = 0.04.

sidered to be acceptable when the values of ∆P+ss obtained with two different
partitions of the membrane and of the tube wall differing by at least 50% in point
density, differ by less than 3% (it was found that vGss was not very sensitive to the
precision of the results).

Typical results are given for an initially spherical capsule with radius 0.8, for
capillary number ε = 0.04 , and wall spacing ∆sB = 0.08, in table 1. The membrane is
assumed to be of the neo-Hookean type and is described by (2.13). On figure 2, the
evolution of ∆P+ with the position of xG along the channel is shown for nM = 85, 101,
147 and 171, corresponding to ∆SM = 0.03, 0.025, 0.017 and 0.015. The exact steady-
state value of the additional pressure drop is very close to 6.9. The coarser partition
does not satisfy the accuracy criterion, whereas the three finer partitions do. The
corresponding steady profiles are shown on figure 3. Except for the coarser partition,
they are superimposed within graphical precision. However, it is interesting to note
that for the evaluation of ∆P+ during the entrance phase, a coarse partition is quite
sufficient (figure 2). Indeed, the principal cause for error is due to the computation of
the membrane curvature which takes its maximum value in the tube.

A further check on precision consists in evaluating the radial velocity of the mem-
brane as well as the difference between the values of the axial velocity of the membrane
and the centre-of-mass velocity vG (figure 4a, b). At steady state both quantities should
be zero for all collocation points on the membrane. Those two components of velocity
are very small everywhere on the membrane except where the curvature is large and
changes sharply. However, the shape of the capsule remains steady (i.e. the coordi-
nates of the membrane collocation points remain constant within 10−8 for 10 000 time
iterations). This is due to the fact that the disturbing effect of the non-zero velocity
field is balanced by both the volume correction and the smoothing procedure. Even
though the largest value of the velocity deviation may seem unacceptably large, the
model gives acceptable results based on pressure drop and shape convergence. This
indicates that small errors in the profile geometry (specifically, in the curvature) lead
to comparatively large errors in the local membrane velocity, but do not influence
significantly the overall perturbation to flow as measured by the additional pressure
drop. A similar observation was made by Halpern & Secomb (1989) for tightly fitting
capsules. It can be easily checked that the maximum error on the velocity behaves as
∆S2

M . In order to reduce the error by a factor of 4, the collocation point density must
be doubled and the time step correspondingly halved. This leads to unacceptably
large computation times. Consequently, the evaluation of the accuracy of the results
in this paper will be systematically based on the steady pressure drop. The effect of
a finer partition of the solid boundary was also investigated, by decreasing ∆sB by
75%. The concomitant change in ∆P+ss was less than 1%.

The validity of condition (2.4) has also been checked. The axial flow velocity
upstream of the capsule was computed by means of the integral equation (3.1)
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Figure 2. Additional pressure drop as a function of xG for four partitions of the membrane with
respectively 85, 101, 147 and 171 collocation points. R = 0.8, ε = 0.04.

x

85

0

1.0

–2.0 0–1.5 –1.0 –0.5

0.5r

85

Figure 3. Half-capsule profiles for four partitions of the membrane with respectively 85, 101, 147
and 171 collocation points. R = 0.8, ε = 0.04.

evaluated for x in Ωext and located on the tube axis. It is found that the Poiseuille
velocity is recovered within 1% at a distance roughly equal to one tube radius from
the capsule tip. Since section St is always at least at a distance equal to 5 tube radii
from the capsule, it may be safely assumed that (2.4) is fulfilled. Furthermore, this
shows that the pressure drop due to a train of capsules is simply the sum of the
individual pressure drops due to each capsule as if it were travelling alone in the tube,
provided the distance between two successive particles is at least one tube diameter.

The practical limitations of the numerical model are of two types. For tightly fitting
capsules, the deformation of the membrane is large, and thus ∆SM must be small
enough for the metric properties of the membrane to be determined with satisfactory
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Figure 4. Membrane velocity for four partitions of the membrane with respectively 85, 101, 147
and 171 collocation points. R = 0.8, ε = 0.04. (a) Relative axial velocity, (b) radial velocity.

precision. Furthermore, large hydrodynamic forces appear in the film region, and a
small partition of the tube wall must be used. The ad hoc criterion used here was
that the spacing of collocation points on the wall should be less than half the film
thickness. For very small gaps, it is probably more efficient to use the lubrication
approximation, at least in the film region, but our model is not at present designed to
do so. The other limitation is linked to the appearance of a locally large curvature,
which is difficult to compute with precision. In such zones, the membrane hypothesis
must fail and some bending resistance should be introduced at least locally. This has
not yet been incorporated into the present model.

4. Motion of a spherical neo-Hookean capsule
Results are presented for initially spherical capsules (initial radius R) with a neo-

Hookean constitutive law given by (2.13a,b). The cases of a ‘small’ (R = 0.8) and
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Figure 5. Successive capsule profiles and flow field in the capsule reference frame. Only velocities
larger than 0.1 are shown. R = 0.8, ε = 0.04.

of a ‘large’ (R = 1.2) capsule are considered separately. The possible occurrence of
break-up is discussed. Additional results are given by Quéguiner (1995).

4.1. Small capsule: R = 0.8.

As an example the flow of a capsule with R = 0.8 is discussed in detail for a
value of ε = 0.04 such that a significant deformation is reached at steady state. The
successive capsule profiles and the velocity distribution in a reference frame moving
with the capsule centre of mass, are shown on figure 5. The velocity distribution
shows the coupling between the internal and external flows. The capsule first takes
an oblong shape upstream of the tube entrance (xG < 0), while the internal liquid has
a forward motion near the tip (figure 5a). However, this shape is not in equilibrium
with Poiseuille flow, and the steady profile that is finally obtained is ‘parachute’
like (figure 5d). Once the capsule has entered the tube (xG > 0), the external and
internal velocities are directed inwards at the rear of the capsule. This eventually
leads to the concave shape of this region (figure 5b, c). At steady state, the internal
velocity vanishes, and the capsule behaves as an undeformable particle. Poiseuille
flow is recovered within about one tube radius from the particle (figure 5d). The
corresponding distributions of meridional tension are shown on figure 6. When the
capsule is still in the funnel (xG = −1.5), the front part is significantly extended, but
the rear only a little. When the centre of mass is just inside the tube (xG = 0.23),
the extension of the front has increased, whereas the rear is essentially slack. At
steady state, the maximum extension is located near the front and the rear is slightly
extended because of the local concavity. A small zone of compression appears near
the edge of the capsule where the curvature is locally large. It is in this zone, that
bending forces are expected to become important.

The additional pressure drop as a function of the position of the capsule centre of
mass xG along the axis is shown on figure 7. The pressure drop increases sharply as the
capsule approaches the entrance of the tube. A local peak occurs before the capsule
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Figure 6. Meridional tension distribution during entrance process, for xG = −1.5, 0.2, 1.3 and for
steady state. R = 0.8, ε = 0.04.

has entered the constriction. This is caused by the partial plugging of the channel
during the initial deformation process. A similar phenomenon has been reported by
Secomb (1995) and by Secomb & Hsu (1995) for the flow of cells in a varying-cross-
section capillary. The following decrease in pressure drop is due to the cooperative
effect of the membrane tensions that have built up during the entrance phase. On
the same graph is shown the corresponding pressure drop curve that is obtained in
the hyperboloidal constriction of I. Since the two curves coincide during the entrance
phase, the discussion of the main physical phenomena provided in I also applies
here. In particular, the variations of the pressure drop near the entrance (xG ≈ 0),
may be attributed to successive phases of elastic tension relaxation and build up.
Another conclusion that may be drawn from this comparison is that the hyperboloidal
constriction is useful for the study of entrance phenomena even in long pores.

Starting with the steady state obtained above, the exit process from the tube can
be modelled. The corresponding capsule profiles and velocity fields are also shown on
figure 5. The capsule is ‘blown out’ from the tube: as the front part slows down, the
rear part still advances with the tube flow velocity. There are two converging internal
flows coming from the front and from the rear of the capsule (figure 5e). The capsule
thus expands in the radial direction and the parachute shape becomes even more
pronounced (figure 5f), before the capsule eventually resumes its spherical shape. A
similar exit process has also been observed in the hyperboloidal constriction. The
corresponding pressure evolution curve is shown on figure 7. The local exit peak is
due to the blowing out process and to the fact that for a short time, the capsule tends
to block partially the exit flow from the tube. Altogether, the motion of the capsule
through the tube is a viscoelastic process, since it results from the interplay of viscous
and elastic forces. As a consequence, the entrance and exit pressure curves are not
symmetric even though the flow is inertialess.

The steady-state shapes in the cylindrical section, obtained for R = 0.8 and for
different values of ε are shown on figure 8. The capsule deformability increases with
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Figure 7. Additional pressure drop evolution during flow. Comparison between a long cylindrical
pore ( ) and a short hyperbolic pore ( ). R = 0.8, ε = 0.04.

ε. For infinite values of ε, it is clear that no steady state can exist. The ‘membrane’
is then just a collection of fluid particles that are convected with the flow, and the
deformation grows indefinitely. Correspondingly, for large values of ε, a steady state of
the capsule could not be obtained. The nature of the problem can be ascertained from
the behaviour of the meridional extension ratio λs. This ratio reaches a maximum
λsmax at the front tip of the capsule. The variations of λsmax are plotted on figure 9 as a
function of xG. For small values of ε, a steady value of λsmax is reached; this is not the
case for ε = 0.05, even after severely refining the membrane partition. It seems that
we are faced with the phenomenon of continuous deformation which is predicted for
liquid drops (see the review paper by Stone 1994) and for capsules (Li et al. (1988))
and which leads to bursting of the particle. This is an interesting prediction of the
model, since bursting occurs because the membrane forces cannot balance the viscous
forces. During the continuous extension, the curvature of the parachute edge also
grows without bound. A non-zero bending resistance would oppose this but would
not prevent the continuous extension of the upstream tip. The model predictions are
consistent with experiments on liquid drops in tubes (Olbricht & Kung 1992) where
break-up is observed due to the penetration of a liquid jet into the rear part of the
drop. This is analogous to what is predicted here.

When ε is reduced, the capsule becomes less deformable and this leads to an
increase in the steady-state pressure drop ∆P+ss (figure 14). The asymptotic limit
ε = 0, corresponding to a solid sphere, was computed by Hyman & Skalak (1972).
For R = 0.8, the asymptotic values of ∆P+ss and of the relative particle velocity
(vGss − 1) are respectively 7.74 and 0.27. For the smallest value of ε investigated here
(ε = 0.005), the numerical value of (vGss − 1) is 0.28, which is close to the asymptotic
value. However, the numerical value of ∆P+ss is 8.1, which is also close but larger
than the asymptote. It would thus seem that the asymptotic value of the pressure
drop is approached from above. This result was consistently observed for all capsules
with R 6 0.8, where the steady pressure drop first increases with ε and then decreases.

This phenomenon is due to the flared profile that the particle must take to balance
fluid forces (figure 8). For small ε, the gap width between the wall and the capsule
or the sphere is of the same order. However, the gap length is longer for the capsule
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Figure 8. Effect of capillary number ε on the steady shape of a spherical capsule with R = 0.8.
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Figure 9. Evolution of the maximum meridional elongation ratio as a function of position along
the pore. For ε 6 0.04, a steady state is reached. For ε = 0.05 the elongation ratio of the membrane
increases without limit, thus indicating the occurrence of burst through continuous elongation.
R = 0.8.

than for the sphere (because of the concave region at the back of the capsule). It
follows that the perturbation created by the capsule is larger than the one created by
the sphere. For larger values of ε, the gap width between the capsule and the wall
becomes larger than for the sphere. Even though the gap length is longer, the overall
dissipation created by the capsule is less than that for the sphere.

4.2. Large capsule: R = 1.2

The case of a capsule with R = 1.2, ε = 0.005 is taken as an example. The different
phases of entrance and exit are quite similar to those observed for small capsules
(figure 10). During entrance, the internal liquid has a diverging motion towards the
front and towards the rear, which leads to the deformation of the sphere into a slug.
During exit, the internal fluid converges from the front and from the back of the
capsule, thus leading to a radial expansion of the slug. The pressure drop evolution
as a function of xG during entrance and exit is shown on figure 11. Again, two
local peaks of pressure occur in the entrance and exit funnels. They are both due
to transient partial plugging of the tube. The entrance peak can be as high as the
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Figure 10. Successive capsule profiles and flow field in the capsule reference frame. Only velocities
larger than 0.1 are shown. R = 1.2, ε = 0.005.
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Figure 11. Additional pressure drop evolution during flow. R = 1.2, ε = 0.005.

steady plateau value. The steady additional pressure drop is much larger than that
for R = 0.8.

The steady capsule profiles obtained for different values of ε are shown on figure 12.
The rear of the capsule is convex for small ε, and becomes concave as ε increases. For
ε equal to 0.015, no steady state can be obtained and the phenomenon of continuous
extension is also observed. As ε decreases, the steady pressure drop increases sharply,
the film thickness decreases and the centre-of-mass velocity also decreases towards
the asymptotic value of unity.

It is of interest to compare the model predictions with the results obtained by
Halpern & Secomb (1989) for area-incompressible capsules based on the lubrica-
tion approximation. In the case where the shear resistance of the membrane is
neglected, the membrane behaviour becomes essentially Eulerian, the elastic tensions
are isotropic and the meridional extension ratio can be obtained in a simple way.
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indicate the position of the back of each capsule.

The centre of the capsule is surrounded by a constant-thickness film. The pressure in
the film and the tension in the membrane are then linear functions of the arclength,
i.e. of x in the film region. Details of the film profile for R = 1.2 and neo-Hookean
capsules are shown on figure 13(a). The classical oscillation of the film near the
rear of the capsule is recovered by the model. However, the film thickness is not
constant but increases as one moves from the back to the front. Thus the capsule
behaves as a slipper bearing: the pressure in the film goes through an extremum
(figure 13b). The pressure evolution as well as the capsule profile are different from
those obtained by Secomb et al. (1986) for area-incompressible cells with shear
and bending resistance. This shows that the membrane constitutive equation plays
an important role in the control of capsule dynamics. A full lubrication analysis
would be difficult to perform for a neo-Hookean capsule, since the mapping be-
tween the undeformed and deformed profiles is not simple and must be obtained
numerically by means of some kind of iterative method. Consequently, the present
model where entrance into the tube is specifically taken into account, is essential in
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Figure 14. Steady pressure drop due to a spherical neo-Hookean capsule, for R = 1.4; 1.2; 1.0;
0.9; 0.8; and 0.5. Burst occurs when ε exceeds a critical value that depends on size.

the sense that it provides the necessary mapping between the reference and deformed
states.

5. Spherical neo-Hookean capsule: global effect of size and rigidity
The steady results obtained for neo-Hookean initially spherical capsules with radii

ranging from 0.5 to 1.4 are now summarized. Smaller capsules are not very interesting
to study, as they create a very small hydrodynamic perturbation. Capsules larger
than R = 1.4 tend to fill the tube and leave a gap that is too narrow for the present
computation to be accurate (see discussion in §3.3). The steady additional pressure
drop ∆P+ss is shown as a function of R and ε in figure 14. The pressure drop in the
absence of the capsule is simply

∆P∞ = 8(Lt + L′),

where L′ accounts for entrance and exit effects. A typical filtration membrane has Lt
of order 5 or more. Consequently, a small capsule such that R 6 0.8 creates a relative
perturbation that is less than 20%, and as such, difficult to measure with precision.
Furthermore, for small capsules (R < 1), it appears that ∆P+ss is sensitive to size
effects but insensitive to the membrane elasticity as measured by ε. For example,
for R = 0.9, a two-fold increase in ε leads to a concomitant decrease in ∆P+ss of
about 15%. The same conclusion is reached by Drochon et al. (1993) who conducted
filtration experiments (pore diameter 5 µm) on red blood cells suspended in Dextran
solutions such that the viscosity ratio λ is of order unity. They find that the filtration
time of normal and membrane rigidified cells (with Es roughly doubled) differed by
10 to 20%.

For large capsules (R > 1), the relative pressure drop is large enough to be
measurable. Furthermore, the effect of membrane rigidity is important. Indeed, for
R = 1.2, a two-fold increase in ε leads to a decrease in ∆P+ss of about 62%. This
indicates that filtration experiments may be used to measure the elastic modulus of
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Figure 15. Steady relative velocity of a spherical neo-Hookean capsule. Same R values as figure 14.

the membrane, provided that relatively small pores are used, so that a significant
deformation of the capsule occurs. Break-up through the phenomenon of continuous
extension is consistently observed for all capsules, and the limit between steady and
unsteady cases is indicated on figure 14. As expected, the larger the particle, the
smaller the critical value of ε.

The relative capsule velocity is shown on figure 15. All capsules flow faster than the
mean velocity of the suspending liquid, since (vGss − 1) is positive. For large capsules,
this quantity becomes very small, as slugs tend to move with the mean flow velocity.
If the tube is fed with a capsule suspension, dilute enough to avoid interaction effects,
the particle concentration φt inside the tube will thus be smaller than the feed φf
concentration in the reservoir (Sutera et al. 1970):

φt/φf = 1/vGss.

This is the Farheus effect, first observed for capillary blood flow. Obviously, this effect
is more prominent for small than for large capsules.

For large capsules such that R ∈ [1.0, 1.4], the particle takes a slug shape, and both
∆P+ss and (vGss − 1) follow power laws with respect to ε, with a good approximation.
Indeed, in the range of parameters that has been tested, it is found that:

∆P+ss = kε−n, (5.1)

(vGss − 1) = k′εn
′
, (5.2)

where k, k′, n and n′ depend on R and are given in table 2 together with the correlation
coefficient. Such approximate formulae are useful for the interpretation of filtration
experiments through long enough pores, where the pressure drop and the flow rate
across the filter are simultaneously measured.

Another quantity of interest is the length of tube Le necessary to reach a steady
state. The entrance length is defined as the position of the capsule front where the
steady value of ∆P+ss has been reached within 3%. For very deformable particles, the
larger the capsule, the longer the entrance length. As shown on figure 16, for small
values of ε, the interplay between size and rigidity is complex. Owing to geometrical



368 C. Quéguiner and D. Barthès-Biesel

R k n Regr. k′ n′ Regr.

0.8 5.48 0.08 0.898
0.9 5.91 0.20 0.998 0.64 0.26 0.984
1.0 5.87 0.30 1.000 0.86 0.37 0.999
1.2 4.34 0.50 1.000 1.72 0.57 1.000
1.4 3.19 0.64 0.999 3.53 0.71 0.997

Table 2. Power-law coefficients for the additional pressure drop (k, n) and for the relative capsule
velocity (k′, n′), with the associated regression coefficients
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Figure 16. Entrance length of a spherical neo-Hookean capsule. Same R values as figure 14.

constraints, large capsules take the equilibrium slug shape at the beginning of the
pore, but need a minimum length to just squeeze in. The entrance length of small
capsules is of order 3.5 to 5 pore radii, and increases sharply as ε approaches the
critical break-up value. For large capsules the entrance length is quite large (from 5.5
to 8). These results indicate that, unless the pore is long enough, filtration of cells
or capsules is an essentially transient process that cannot be analysed in a simple
fashion. Indeed, a typical membrane used for red blood cell filtration has pores
with a diameter of 5 µm and a length between 10 and 15 µm (Fisher et al. 1992,
Drochon et al. 1993). In such a membrane, a steady flow situation is probably not
reached.

6. Influence of membrane constitutive behaviour
We now consider discoidal capsules (denoted CSK) with a membrane that resists

local area changes and is thus described by equations (2.14a, b). Interface mechan-
ics depend on two parameters: the elastic modulus Es (measured by ε) and the
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relative area dilatation modulus C . Two cases are studied: a small capsule with
R = 0.9, D = 0.6 and a large capsule with R = 1.2, D = 0.8. Thinner capsules
with a smaller sphericity index (ratio between the surface of the sphere that has
the same volume and the surface of the particle) tend to buckle, and could not be
modelled.

6.1. Small capsule (R = 0.9, D = 0.6)

The effect of the membrane constitutive law is assessed by comparing the flow
of two capsules CNH and CSK which have the same initial geometry (R = 0.9,
D = 0.6), but with membranes obeying respectively equations (2.13a, b) and (2.14a, b).
The parameter C is set to 60 for CSK , and in both cases the capillary number is
ε = 0.02. The successive profiles of the particle as it flows into the pore are shown
on figure 17(a, b). It appears that the constraint imposed on surface area limits the
deformation of CSK . As a consequence, the back of CSK is not concave like that of
CNH (figure 18). The steady additional pressure drop is respectively 9.3 for CNH and
8.8 for CSK . These two values are very close. This shows again that the details of the
deformed geometry do not influence much the hydrodynamic perturbation created
by the capsule. The value of ∆P+ss is slightly larger for CNH than for CSK . This is
due to the fact that the film region of CNH is longer than that of CSK , owing to the
negative curvature region at the rear of the capsule.
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The relative local area dilatation is simply given by

∆A/A = λsλφ − 1.

The steady-state value of ∆A/A is shown on figure 19. For CSK it is everywhere
very small, with a maximum value of order 0.4%. In the case of CNH , the local
area dilatation is large with a maximum of about 30% occurring near the tip of the
capsule. It is also of interest to compare the steady-state distribution of the meridian
extension ratio λs (figure 20). CSK is slightly compressed at the rear and extended near
the front. At the two tips, where λs = λφ, there should not be any extension. Even
though the CSK deformation is locally significant (λs ≈ 1.1), its area is nevertheless
nearly constant. CNH is extended everywhere, except locally near the edge of the
parachute. The rear is also extended because of the concavity.
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Figure 21. Effect of capillary number ε on the steady shape of a spheroidal capsule with R = 0.9,
D = 0.6. The numbers indicate the corresponding values of ε. (a) CSK , (b) CNH .

The effect of area dilatation can also be assessed by comparing results obtained for
CSK with different values of C (C = 10, 60, 90) and ε = 0.02. The corresponding values
of the maximum area dilatation are then ∆A/A = 2.1, 0.4 and 0.25%. However, the
steady additional pressure drop remains almost constant (∆P+ss = 10.1, 10.2, 10.2).
This means that a fully area-incompressible capsule would create essentially the same
amount of additional pressure drop and would have the same profiles as those for
CSK shown in figure 17.

The effect of capillary number on the capsule shape is shown on figure 21(a, b).
The steady profiles of CSK are obtained for different values of ε, but for the same
value of maximum area dilatation set to 0.4% (they thus pertain to a nearly area-
incompressible capsule). The rear of the capsule is not concave, even for very de-
formable particles, corresponding to fairly large values of ε. Furthermore, the capsule
shape does not change much as ε is increased. This indicates that for large values of
ε, a steady state is reached where the mechanics of the capsule are essentially dom-
inated by area compressibility. The neo-Hookean capsule CNH exhibits a different
behaviour: the rear always shows some concavity. Furthermore, as ε is increased past
0.04, CNH undergoes continuous elongation and bursts. This phenomenon does not
occur with CSK , since the resistance to area dilatation limits the overall deformation
of the capsule. This does not mean that break-up would not occur for CSK , but the
burst criterion in that case would have to be based on some critical stress level in the
membrane.

The steady pressure drop evolution for CSK and CNH is shown on figure 22. The
two curves follow the same trend and are almost superimposed for small values of
ε, such that the shear resistance of the membrane is prevalent. For ε larger than
about 0.04, CNH seems to burst, whereas CSK reaches an asymptotic state controlled
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by area incompressibility. It is also of interest to compare the pressure drops due to
two roughly isovolumic neo-Hookean capsules which are initially spherical (R = 0.8)
or discoidal (R = 0.9, D = 0.6). The discoidal capsule creates a larger pressure drop
than the spherical one (figure 22). This may be due to the ‘excess’ surface area of the
discoidal particle. However, as ε increases, the difference between the two pressure
drops decreases. This means that the influence of the initial geometry fades out until
burst occurs.

6.2. Large capsule (R = 1.2, D = 0.8)

A large area-incompressible capsule must have a large enough sphericity index to flow
into the tube. In a very small cylindrical tube, the limiting shape the capsule can take
is that of a cylinder closed by two hemispherical caps. It is then straightforward to
determine the critical minimum radius of the tube into which the capsule can squeeze
while keeping constant its global volume and surface. In the case of the spheroidal
capsule R = 1.2, D = 0.8, the corresponding critical tube radius is 0.875. Consequently,
it may be hoped that this capsule can deform enough to fit in a tube with unit radius.
For a given value of ε, as C → ∞ the membrane becomes fully area incompressible.
The maximum area dilatation (∆A/A)max should tend to zero asymptotically, and the
additional pressure drop ∆P+ss should reach an asymptotic value, as was found by
Halpern & Secomb (1989) for closely fitting area-incompressible capsules.

The flow of a capsule CSK (R = 1.2, D = 0.8) has thus been studied in detail for
ε = 0.04 and different values of C (table 3). The variations of ∆P+ss and of (∆A/A)max
are plotted as functions of a modified capillary number associated with area dilatation,
ε′ = ε/C (figure 23). As ε′ goes to zero, ∆P+ss increases without showing any tendency
to level off at an asymptotic value. However (∆A/A)max decreases with ε′ (for the
smallest value ε′ = 4.4 × 10−5, the maximum local area change is 0.4%, at the
limit of numerical accuracy). It may be expected that (∆A/A)max goes to zero as
ε → 0. Indeed, as was pointed out by Professor R. Skalak (private communication),
it is always possible to map continuously an axisymmetric surface onto another
axisymmetric surface keeping the local surface area constant (see the Appendix for
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ε C ε′ (×104) (∆A/A)max ∆P+ss

0.02 90 2.2 1.4% 32.1
0.04 120 3.3 2.0% 27.7

160 2.5 1.6% 28.0
240 1.7 1.2% 29.6
500 0.8 0.7% 32.0
900 0.4 0.4% 35.1

0.06 160 3.7 2.2% 26.1
300 2.0 1.4% 28.6

0.15 800 1.9 1.4% 27.7
1600 0.9 0.8% 29.6

Table 3. Effect of ε and C on the flow of a large ellipsoidal capsule (R = 1.2, D = 0.8)
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Figure 23. Spheroidal capsule (R = 1.2, D = 0.8): effect of ε′ on the steady additional pressure
drop (N ) and on the maximum area dilatation with ε =0.04 (�).

proof). However, the fact that ∆P+ss does not seem to reach any asymptotic value
indicates that the capsule R = 1.2, D = 0.8, cannot flow into the tube, while keeping
its local area constant. This may be because there is no axisymmetric shape that fits
into the tube and keeps the local surface area constant and is in equilibrium with the
flow. A similar conclusion is reached by Leyrat-Maurin et al. (1995) in the case of an
hyperbolic pore.

In their study of closely fitting area-incompressible capsules, Halpern & Secomb
(1989) first neglect the membrane shear resistance (this corresponds to large values of
ε). They then determine the steady shape of capsules with different sphericity index
flowing in tubes with radius slightly larger than the corresponding critical radius (their
figure 9). They also find steady-state shapes when shear and bending resistance are
included, assuming that the unstressed reference shape of the membrane is spherical.

Halpern & Secomb did not encounter the same effect of pore plugging as we did.
Of course, their reference state for the membrane is either irrelevant (large-ε case) or
different from ours, since we considered the initial spheroid as being the unstressed
reference state. However the main difference between the two studies is that their
sphericity index (from 0.72 to 0.82) is much smaller than ours (0.97). It is then quite
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Figure 24. Effect of capillary number ε on the steady shape of a spheroidal capsule with R = 1.2,
D = 0.8 and with maximum area change of 1.5% . The numbers indicate the corresponding values
of ε.
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Figure 25. Schematics of domain Ω.

possible that the flow of a capsule in a tube is influenced in a complicated way by
sphericity index, size ratio and membrane constitutive equation. This point would be
interesting to investigate more fully.

When a small area dilatation is allowed, a steady solution can be found. For
example, the steady profiles obtained for different values of ε and for a maximum
surface area change of about 1.5% are shown on figure 24. The capsule tends to form
a slug and thus undergoes a drastic shape change from oblate to prolate. The back
of the particle is not concave, as it is for a neo-Hookean capsule. The largest area
dilatation occurs at the front of the particle. These shapes are quite similar to those
obtained by Halpern & Secomb. The corresponding steady pressure drop evolution
is shown on figure 22. The pressure drop becomes insensitive to ε for strong flows
and no tendency towards burst is observed.

This work was supported by Conseil Régional de Picardie, Pôle Modélisation.

Appendix
Consider a closed axisymmetric domain Ω bounded by surface ∂Ω (figure 25). The

cylindrical coordinates (r, θ, x) of points on ∂Ω may be defined in terms of the
arclength s of a meridian curve:

x = x(s) and r = r(s),

with r(0) = r(L) = 0, where x is the revolution axis, s is oriented in the same direction
as x, and L is the length of a meridian curve. Then, the surface area A(s) of ∂Ω,
measured from the point where s = 0, is given by

A(s) =

∫ s

0

2π r(u)du,
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and is a monotonic increasing function of s, since r is non-negative. The total surface
area AT of ∂Ω is then simply

AT = A(L).

Consider now another axisymmetric domain Ω′ bounded by ∂Ω′, with same total
surface area AT . The points of ∂Ω′ are defined by the arclength s′ along a meridian
curve, so that the surface area measured from the point where s′ = 0 is also given by

A′(s′) =

∫ s′

0

2π r′(u′)du′ with AT = A′(L′).

Since A(s) and A′(s′) are monotonic functions, there exists a unique mapping of ∂Ω
onto ∂Ω′ that conserves locally the surface area and that is given by

s = A−1[A′(s′)].

This mapping is independent of the volume V (or V ′) of Ω (or Ω′), which is given by

V =

∫ L

0

πr2 (s) dx(s),

and leads to an integral equation for the function x(s).
This proof has been pointed out by Professor R. Skalak.
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Skalak, R., Özkaya, N. & Skalak, T. C. 1989 Biofluid mechanics. Ann. Rev. Fluid Mech. 21,
167–204.

Stone, H. A. 1994 Dynamics of drop deformation and break-up in viscous fluids. Ann. Rev. Fluid
Mech. 26, 65–102.

Sutera, S. P., Pierre, P. R. & Zahalak, G. I. 1989 Deduction of intrinsic mechanical properties of
the erythrocyte membrane from observations of tank-treading in the rheoscope. Biorheology
26, 177–197.

Sutera, S. P., Seshadri, V., Croce, P. A. & Hochmuth, R. M. 1970 Capillary blood flow II.
Deformable model cells in tube flow. Microvasc. Res. 24, 296–313.

Youngren, G. K. & Acrivos, A. 1975 Stokes flow past a particle of arbitrary shape: a numerical
method of solution. J. Fluid Mech. 69, 377–403.

Zhou, H. & Pozrikidis, C. 1995 Deformation of liquid capsules with incompressible interfaces in
simple shear flow. J. Fluid Mech. 283, 175–200.


